
CS395T: Continuous Algorithms, Part I
Convexity, logconcavity, and continuous algorithms

Kevin Tian

1 Introduction
Algorithm design has traditionally been studied through a discrete perspective. For example,
classical textbooks [CLRS22] in large part focus on problems defined on naturally discrete domains.

Increasingly, however, modern research in algorithm design has benefitted from adopting a contin-
uous perspective and using tools developed through the study of continuous mathematics. Some-
times, this benefit has come in discrete settings, e.g. discrete optimization or sampling problems,
which ask to find the element x belonging to a finite set S which minimizes an objective f(x),
or to sample x proportional to a density µ(x). In such cases, it can often be helpful to consider
a continuous relaxation of the discrete problem where the domain S is extended to a continuous
superset S′ containing it, and then a new continuous optimization or sampling problem is solved
over S′ (e.g. the Boolean cube S = {0, 1}d can be relaxed to the hypercube [0, 1]d). The continuous
solution is then converted to a desired element of S solving the original problem.

In other cases, often arising in the modern theory and practice of data science, the problem we are
trying to solve is inherently continuous. For example, we could be performing parameter estimation
in a statistical setting (e.g. learning the parameters of a generalized linear model, or estimating
the top eigenvectors of a distribution’s covariance). Additionally, outputs of continuous algorithms
(e.g. samples from a distribution on Rd) may have appealing properties for downstream use in a
way discrete counterparts do not, giving guarantees such as robustness or data privacy.

As we hope to convey through this course, studying algorithms through a continuous lens is a
rewarding experience for algorithm designers across a surprisingly diverse set of domains. Often,
continuous methods provide frameworks for algorithm design which are quite distinct from their
more traditional counterparts, offering new ways of exploiting structure latent in problems. What
is particularly appealing about this continuous toolkit is the many synergies between its different
components; in various situations, continuous methods provide unified, principled perspectives on
algorithmic tools which may otherwise seem ad hoc. In this first lecture, we will touch upon two
aspects of the continuous toolkit, centered around the analysis of convex and logconcave functions.
We then give a first instructive example on how these analytical tools yield new powerful algorithmic
primitives such as convex programming, for discrete and continuous problems alike.

2 Convexity
Convex analysis is the first central tool we encounter, and will be used throughout the course to
develop algorithms. We begin with two definitions of convexity.

Definition 1 (Convex set). We say a set X ⊆ Rd is convex if for all x, x′ ∈ X the line segment
between x and x′ lies in X , i.e. (1− λ)x+ λx′ ∈ X for all λ ∈ [0, 1].

Correspondingly, for any λ ∈ [0, 1], we call (1− λ)x+ λx′ a convex combination of x and x′.

Definition 2 (Convex function). We say a function f : X → R is convex if X is convex and
for all x, x′ ∈ X the linear interpolation of f(x) and f(x′) overestimates the function on the line
segment between x and x′, i.e. f((1− λ)x+ λx′) ≤ (1− λ)f(x) + λf(x′) for all λ ∈ [0, 1].

These two definitions are related as follows. Let χS(x) be the 0-∞ indicator of S, i.e. χS(x) = 0
if x ∈ S and χS(x) = ∞ otherwise. It is simple to verify that χS is a convex function iff S is a

1

convex set. Conversely, define the epigraph of f : X → R by

epi(f) := {(x, t) ∈ X × R | t ≥ f(x)}.

We can also check that f is a convex function iff epi(f) is a convex set. Sometimes, Definition 2
in rephrased in terms of first-order approximations, in the following way.

Lemma 1. Let f : X → R be differentiable. Then f is convex iff for all x, x′ ∈ X ,

f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉 . (1)

Proof. To show one direction, applying (1) at x← xλ := (1− λ)x+ λx′ and x′ ← x, x′ yields

f(x) ≥ f(xλ) + 〈∇f(xλ), x− xλ〉 = f(xλ) + λ 〈∇f(xλ), x− x′〉 ,
f(x′) ≥ f(xλ) + 〈∇f(xλ), x′ − xλ〉 = f(xλ) + (1− λ) 〈∇f(xλ), x′ − x〉 ,

proving convexity of f upon linearly combining the two equations above. To show the other,

f(x′) ≥ lim
λ→0

f((1− λ)x+ λx′)− (1− λ)f(x)

λ

= f(x) + lim
λ→0

f(x+ λ(x′ − x))− f(x)

λ
= f(x) + 〈∇f(x), x′ − x〉 .

(2)

The only inequality used that the definition of f being convex holds pointwise over λ.

Observe that the right-hand side of (1) is the first-order Taylor expansion of f about x; Lemma 1
simply states that this first-order approximation underestimates f everywhere. One of the ba-
sic reasons that convexity is useful is that convex functions have well-behaved minimizers. For
example, we will frequently apply the following first-order optimality condition.

Lemma 2 (First-order optimality). Let f : X → R be differentiable and convex. Then

x? ∈ argminx∈X f(x) ⇐⇒ 〈∇f(x?), x? − x〉 ≤ 0, for all x ∈ X .

Proof. To show one direction, if 〈∇f(x?), x? − x〉 ≤ 0, directly applying (1) shows that

f(x) ≥ f(x?) + 〈∇f(x?), x− x?〉 ≥ f(x?) for all x ∈ X .

To show the other, let x? ∈ argminx∈X f(x), and suppose for contradiction that 〈∇f(x?), x− x?〉 <
0 for some x ∈ X . Then consider the point xλ := (1−λ)x?+λx. For vanishing λ→ 0, the derivation
in (2) shows that f(xλ) ≈ f(x?) + λ 〈∇f(x?), x− x?〉 < f(x?), giving a contradiction.

Lemma 2 gives us a way of certifying optimality of a point x?, by establishing 〈∇f(x?), x? − x〉 ≤ 0
for all x ∈ X ; notice this is certainly true if ∇f(x?) is the zero vector. Moreover, the second half of
Lemma 2 already suggests a natural iterative approach to minimize convex functions. Whenever
x ∈ X is not a minimizer of f , there is a direction violating the first-order optimality condition,
and moving a sufficiently short distance along this direction decreases the function value. We will
expand upon this intuition and provide quantitative guarantees for it over the next few lectures.
The following characterization of the minima and maxima of convex functions is also often helpful.

Lemma 3. Let f : X → R be convex, and let f have minimizer set X ? := argminx∈X f(x) and
maximizer set X+ := argmaxx∈X f(x). Then X ? is convex, and if X+ 6= ∅, it either contains a
boundary point of X (i.e. x+ ∈ X such that 6 ∃x, x′ ∈ X , λ ∈ (0, 1) with x+ = (1−λ)x+λx′) or X
has no boundary points. If f is strictly convex (i.e. Definition 2 holds with strict inequality), X ?
is a singleton and X+ only contains boundary points if it is nonempty.

Proof. We begin with the claims about X ?. Suppose f has minimizers x 6= x′ (else there is nothing
to prove), and let f(x) = f(x′) = f?. For λ ∈ [0, 1] and xλ := (1−λ)x+λx′, we have f(xλ) ≤ f? by
convexity of f , so xλ ∈ X ?, proving convexity of X ?. If f is strictly convex and f(x) = f(x′) = f?

for x 6= x′, strict convexity yields xλ with f(xλ) < f? for any λ ∈ [0, 1], a contradiction.

Next, we prove the claims about X+. If there is an interior point x+ ∈ X+ attaining the maximum
function value f(x+) = f+, choose any other x ∈ X , and note that by definition of interior

2

points, the ray from x to x+ passes through another point x′ ∈ X extending beyond x+, so that
x+ = (1−λ)x+λx′ for λ ∈ (0, 1). Therefore, f+ = f(x+) ≤ (1−λ)f(x)+λf(x′), so f(x) = f+ and
x is also a maximizer. Because x was arbitrary, f is a constant function, so if X has any boundary
points they are in X+. If f is strictly convex, this rules out interior point maximizers.

Let us now give an example of a type of convex function we will frequently encounter.

Lemma 4. Let ‖·‖ : Rd → R be a seminorm on Rd,1 i.e. it satisfies the following properties.

1. Triangle inequality: ‖x+ x′‖ ≤ ‖x‖+ ‖x′‖ for all x, x′ ∈ Rd.

2. Absolute homogeneity: ‖tx‖ = |t| ‖x‖ for all t ∈ R.

Then ‖·‖ is a convex function.

Proof. By the triangle inequality and absolute homogeneity respectively, we have the desired

‖(1− λ)x+ λx′‖ ≤ ‖(1− λ)x‖+ ‖λx′‖ = (1− λ) ‖x‖+ λ ‖x′‖ for all λ ∈ [0, 1].

We next give a first application showcasing the utility of Lemmas 2 and 3.

Corollary 1. Let S ⊂ Rd be compact and convex, and suppose x0 6∈ S. There is a separating
hyperplane g ∈ Rd, such that g 6= 0d and g>x0 > g>x for all x ∈ S. Moreover, if x0 ∈ S is a
boundary point,2 there is a supporting hyperplane g 6= 0d ∈ Rd with g>x0 ≥ g>x for all x ∈ S.

Proof. For the first claim, let f(x) := 1
2 ‖x− x0‖22; it is straightforward to check f is strictly

convex,3 and ∇f(x) = x − x0. Let x? := argminx∈Sf(x), which exists since we are minimizing a
continuous function over a compact set; Lemma 3 guarantees x? is unique. Then, by Lemma 2,

〈∇f(x?), x? − x〉 = 〈x? − x0, x
? − x〉 ≤ 0 for all x ∈ S.

Let g := x0 − x? 6= 0d, since x0 6∈ S. We then rearrange the above, showing the desired

g>x ≤ g>x? = g>x0 + g>(x? − x0) = g>x0 − ‖g‖22 < g>x0 for all x ∈ S.

For the second claim, we can take a convergent subsequence {xi}i≥1 ⊂ Rd \ S approaching x0,
which come with supporting hyperplanes {gi}i≥1 ∈ Rd which are, without loss of generality, unit
length. Taking g to be the limit of any convergent subsequence of the {gi}i≥1, we have g>(x0−x) =
limi→∞ g>i (xi − x) ≥ 0 for all x ∈ S, which yields the claim upon rearranging.

We pause to address an important point: the assumption of differentiability in Lemmas 1 and 2.
Notice that the definition of convexity (Definition 2) and our other results in this section do not use
differentiability; indeed, there are convex functions (e.g. f(x) = |x|) which are not differentiable
everywhere. Moreover, the definition of convexity does not even rule out discontinuous functions.
Fortunately, even in such scenarios convex functions admit the following proxy for a derivative.

Definition 3 (Subgradient). Let f : X → R. We say g is a subgradient of f at x ∈ X if

f(x′) ≥ f(x) + 〈g, x′ − x〉 for all x′ ∈ X .

We denote the set of subgradients of f at x by ∂f(x).

Comparing to (1), it is clear that if f is convex, ∇f is a subgradient everywhere it is defined.
Interestingly, convex functions admit subgradients almost everywhere they are defined.

Lemma 5. Let f : X → R be convex, and assume X ⊆ Rd. For all x ∈ relint(X), the relative
interior of X ,4 ∂f(x) is nonempty.

1Seminorms are norms without the positive definiteness restriction that only x = 0d has ‖x‖ = 0.
2That is, x0 ∈ S but no open neighborhood of x0 lies completely in S.
3We will develop several ways to verify convexity more easily in later lectures, but for now note that strict

convexity of f follows from a direct expansion of Definition 2 and completing the square.
4Recall the interior of a set S is all points in S with an open neighborhood in S. In settings where S ⊆ Rd but

S is not full-dimensional, the relative interior of S is the interior of S within the smallest subspace containing it.

3

Proof. Since (x, f(x)) lies on the boundary of epi(f), Corollary 1 gives (a, b) 6= 0d+1 ∈ Rd×R such
that for all (y, t) ∈ epi(f), a>x+ bf(x) ≥ a>y + bt. We may assume without loss that a is in the
minimal subspace containing X . Since t can be arbitrarily large, this implies b ≤ 0. We claim that
in fact, b 6= 0. If a = 0d, then indeed b < 0 since (a, b) 6= 0d+1. Otherwise, as x lies in the relative
interior of X , choosing y = x+ εa ∈ X for sufficiently small ε > 0 also gives b 6= 0, else a>x < a>y
would be a contradiction. Finally, since (x′, f(x′)) ∈ epi(f), we have for g = −ab ,

a>x+ bf(x) ≥ a>x′ + bf(x′) =⇒ f(x′) ≥ f(x) + 〈g, x′ − x〉 =⇒ g ∈ ∂f(x).

While pathological examples do exist for convex functions, generic properties such as Lemma 5
relying on fairly minimal assumptions provide convex functions a great deal of regularity, and allow
us to design general-purpose algorithms. For the remainder of the course, to avoid pathological
examples, we adopt the following assumptions anytime we discuss a convex function f : X → R,
except when otherwise stated, which simplifies much of our downstream development.

1. f is closed, i.e. its epigraph epi(f) is closed. It is straightforward to verify this implies f is
continuous within the relative interior of X .5 Two common examples of closed functions are
functions which are finite on a closed set X , and functions of Legendre type. A function is
of Legendre type if it is differentiable everywhere in X := int({x ∈ Rd | f(x) <∞}) 6= ∅, and
f,∇f →∞ as x approaches the boundary of X . The fact that f →∞ as x approaches the
boundary prevents existence of a limit point of epi(f) that is not contained in epi(f).

2. f is proper, i.e. it takes Rd to values in R∪{∞}, and is finite on X 6= ∅. We often overload f
with its proper extension, defining f(x) =∞ for any x 6∈ X , when X ⊂ Rd. Correspondingly,
when we say f : X → R is convex, we imply X is the set where f is finite.

As we will see, Section 3 develops a general-purpose algorithm which minimizes convex functions,
relying on convexity only through Lemma 3, Corollary 1, and Lemma 5, highlighting how funda-
mental these results are. Indeed, Section 3 demonstrates that convex functions are appealing from
an algorithmic perspective, as convexity of f implies an efficient algorithm for optimizing f .

We mention that convexity is a property of significant relevance in applications.

1. Linear functions and polytopes (intersections of halfspaces) are both convex, and hence con-
vex optimization applies to the ubiquitous problem of linear programming (linear optimiza-
tion over a polytope). Problems which can be written as linear programs are widespread, e.g.
minimum-cost flow and its relatives, resource allocation, and various scheduling problems.

2. Common objectives in statistics and machine learning, such as linear regression, logistic
regression, support vector machines, and regularizers such as the Lasso and ElasticNet, are
all convex. Other problems are modeled with convex relaxations, such as the ELBO loss in
variational Bayesian methods, or semidefinite programs (a generalization of linear programs).

3. Discrete optimization problems defined over subsets of a base set may also be amenable to
convex optimization algorithms. For example, a submodular function is defined over {0, 1}S
for a discrete set S, but admits a continuous relaxation (the “Lovasz extension”) which is
convex. This relaxation has the useful properties that we can efficiently compute subgradients
of it, and by convexity, the minimizer of the relaxation is an extremal point and hence an
element of {0, 1}S . Submodularity is a property which captures the notion of “diminishing
marginal returns,” and often models problems where diversity is a target.

Our study of convex analysis will prove fruitful beyond convex optimization; throughout the course,
we highlight several examples of functions which are nonconvex, yet nonetheless admit efficient
optimization algorithms. The development of these structured nonconvex optimization algorithms
will draw heavily upon our convex analysis tools, adding further merit to the study of this theme.

5One may hope that closedness implies Lemma 5 can be modified to hold true everywhere on X , not just the
interior. However, the example f(x) = −

√
1− x2 for x ∈ [−1, 1] and f(x) =∞ elsewhere dashes these hopes, as no

subgradient exists at x = ±1. Nonetheless, closedness is a useful assumption in other pervasive situations.

4

3 Cutting-plane methods
In this section, we provide an application of the facts shown in Section 2. Specifically, we will
establish the following remarkable theorem by designing an algorithm.

Theorem 1 (Polynomial-time convex optimization). Let f : X → R be convex for X ⊂ Rd, and
assume f has an additive range6 bounded by poly(d). There is an algorithm which uses O(d log d

ε)
queries to a value and subgradient oracle for f , and poly(d, log 1

ε) additional time, such that with
high probability,7 the algorithm returns x satisfying f(x) ≤ minx?∈X f(x?) + ε.

To build up to Theorem 1, we begin with a statement of a conceptual framework for algorithm
design, phrased as a game. In it, a player (algorithm designer) Alice is attempting to end the
game, and an adversary Bob is trying to make Alice’s job as difficult as possible while playing by
the rules. There are two ways the game can end: either Alice finds a point in a hidden set S?, or
Alice sufficiently reduces the volume of a superset of S?. We now formally define this game.

Definition 4 (Cutting-plane game). Consider the following game between Bob, who holds compact,
convex S? ⊂ Rd, and Alice, who holds S0 ⊇ S?, starting from t = 0 and parameterized by Vmin > 0.

1. On turn t, if Vol(St) < Vmin, the game ends. Else, Alice chooses xt ∈ St.

2. If xt ∈ S?, the game ends. Else, Bob chooses gt ∈ Rd such that g>t xt > g>t x for all x ∈ S?.
Note that such gt exists by Corollary 1, but is not necessarily unique.

3. Alice updates St+1 to be any superset of St ∩Ht where Ht := {x ∈ Rd | g>t x < g>t xt}, and
the game advances to turn t+ 1.

Observe that the definitions of Steps 2 and 3 imply the invariant St ⊇ S? for all iterations t where
the game is played. However, there is substantial freedom in how the two players play the game: in
particular, how should Alice choose xt ∈ St and, upon observing gt, update St to St+1? Conversely,
what choice of gt would make Alice’s job as hard as possible? We will shortly give an instantiation
of Alice’s strategy, which rapidly terminates the game regardless of Bob’s strategy.

One significant reason for studying the cutting-plane game is because it naturally captures convex
optimization under a first-order access model as an application. The following observation also
explains why we give Alice the win condition of decreasing the volume of a set sufficiently: the
remaining volume scales with the approximation error for solving the optimization problem.

Lemma 6. Let f : X → R be convex for X ⊂ Rd, and suppose f has minimizer set X ? :=
argminx∈X f(x).8 Suppose we play the cutting-plane game (Definition 4) initialized from S0 ← X ,
and let α := Vmin

Vol(S0) ∈ (0, 1). Further, suppose Alice always chooses xt ∈ relint(St), and Bob
(who holds S? ← X ?) plays by ending the game if 0d ∈ ∂f(xt), and returning gt 6= 0d ∈ ∂f(xt)
otherwise. If the game terminates in T iterations, letting f? := minx∈X f(x), we have

min
t∈[T]

f(xt) ≤ f? + α
1
d

(
max
z∈X

f(z)− f?
)
.

Proof. We first verify that Bob’s implementation, which returns gt ∈ ∂f(xt), is valid for Step 2 in
Definition 4 (note that ∂f(xt) 6= ∅ by Lemma 5). First, checking whether 0d ∈ ∂f(xt) is equivalent
to checking whether xt ∈ X ?, by Lemma 7. If 0d 6∈ ∂f(xt), we observe that for x? ∈ X ?:

0 > f(x?)− f(xt) ≥ 〈gt, x? − xt〉 . (3)

The first inequality used that xt 6∈ X ?. Next, notice that

x 6∈ Ht =⇒ f(x) ≥ f(xt) + g>t (x− xt) ≥ f(xt), (4)

where the first inequality used gt ∈ ∂f(xt) and the second used x 6∈ Ht. Finally, consider the set

Sα :=
{
x | x = (1− α 1

d)x? + α
1
d z, for z ∈ X

}
= {(1− α 1

d)x?} ⊕ α 1
dX .

6That is, maxx∈X f(x)−minx∈X f(x).
7We will be more precise with the dependence of runtimes, etc. on failure probabilities when formally proving

guarantees on randomized algorithms throughout the course. For now, “with high probability” implies that all
complexities depend polylogarithmically on the inverse failure probability.

8In cases when f is unconstrained (i.e. X = Rd), we assume that we have knowledge of X containing X ?.

5

We defined Sα so that Vol(Sα) = Vol(α
1
dX) = αVol(S0) = Vmin. Now, the game can either end

because Alice has found xT ∈ X ?, for which the conclusion is clearly true, or because Vol(ST) <

Vmin. In the latter case, there is a point x ∈ Sα \ST , such that x = (1−α 1
d)x? +α

1
d z. Notice that

by the definition of Step 3, the only way x /∈ ST is if x 6∈ Ht for some t ∈ [T]. On that iteration t,
applying (4) shows the desired claim for xt, as

f(xt) ≤ f(x) ≤ (1− α 1
d)f? + α

1
d f(z) ≤ f? + α

1
d

(
max
z∈X

f(z)− f?
)
.

In Lemma 6, we used the following simple observation.

Lemma 7. Let f : X → R, and let x? ∈ X . Then x? ∈ argminx∈X f(x) ⇐⇒ 0d ∈ ∂f(x?).

Proof. This follows from the sequence of equivalences:

f(x?) ≤ f(x) for all x ∈ X ⇐⇒ f(x?) + 0>d (x− x?) ≤ f(x) for all x ∈ X ⇐⇒ 0d ∈ ∂f(x?).

Lemma 7 gives a powerful, general-purpose algorithm template for convex optimization in the
oracle model, assuming that we can design a good strategy for Alice to terminate the cutting-plane
game. Specifically, assume access to a value oracle and a subgradient oracle for f , defined in
Definition 5. If we assume f(z) − f? ≤ ∆ for all z ∈ X , and we wish to produce a point x ∈ X
with f(x) ≤ f? + ε, it suffices to take α = (ε∆)d, and call Lemma 6. We implement Bob’s strategy
in the cutting-plane game using the subgradient oracle, and return the iterate we encounter with
the smallest function value, by querying all of our iterates using the value oracle.

Definition 5 (Value and subgradient oracle). We say O is a value oracle for f : X → Rd if when
queried at x ∈ Rd, it returns f(x) if x ∈ X and ∞ otherwise. We say O is a subgradient oracle
for f : X → Rd if when queried at x ∈ Rd, it returns an element of ∂f(x) if it exists (set to 0d by
default if 0d ∈ ∂f(x)), and otherwise returns nothing. When f is differentiable, we also call any
subgradient oracle for f a gradient oracle, which uniquely returns ∇f(x) when queried at x.

Typically, it is reasonable to assume that ∆
ε is polynomially bounded in d, in which case 1

α = dO(d).
In other words, we want to implement Alice’s strategy in a way which reduces the volume of S0 by
a dO(d) factor, in few iterations. We describe one such strategy, relying on the following theorem.

Theorem 2 (Grünbaum). Let S ⊆ Rd be convex, and let

x̄S :=
1

Vol(S)

∫
x exp(−χS(x))dx (5)

denote the center of gravity of S. Then any halfspace H = {x ∈ Rd | v>x ≤ v>x̄S} whose defining
halfplane passes through x̄S satisfies Vol(S ∩H) ≥ 1

eVol(S).

We prove Theorem 2, first shown by [Gru60], in Section 5. Here, we observe that it immediately
yields a strategy for Alice, known as the “center of gravity” method in the literature. If Alice
simply maintains St+1 = St ∩Ht, and chooses xt = x̄St

(i.e. the center of gravity of St) in Step 1
each turn, then any halfspace will guarantee Vol(St+1) ≤ (1− 1

e)Vol(St) by Theorem 2. Therefore,
in T = O(d log d) iterations we can ensure the volume of S0 is reduced by a dO(d) factor.

Remark 1. It is not a priori clear how to implement each step of the center of gravity method
efficiently, because it requires computing the center of gravity x̄St in each iteration t. As we discuss
in Theorem 3 in Section 4, we can produce approximate samples from the uniform distribution on
St, and as shown in [BV04], averaging a polynomial number of these approximate samples suffices
for an approximate variant of Theorem 2 to hold with high probability, i.e. where the constant 1

e is
replaced with a smaller constant. Intuitively, we are computing an approximate center of gravity.

In light of Remark 1 and the framework above, we have proven Theorem 1 (which relies on our
polynomial-time approximate sampler, in turn stated later in Section 4 as Theorem 3).

6

In fact, using a quantitative variant of Alexandrov’s theorem (which states that convex functions
are differentiable almost everywhere), [LSV18] shows that Theorem 1 can be improved to not even
require a subgradient oracle by simulating subgradient computations using a value oracle and a
finite-differences method, losing an ≈ d factor in the value oracle query complexity.

Our proof of Theorem 1 is surprising because it essentially shows that binary search is possible
to do in polynomial time, even in high dimensions. Given an initial volume, which is typically
exponentially-sized in the dimension, we can quickly pin down a small set containing the minimizer
by repeatedly querying a subgradient oracle. More generally, this center of gravity method gives a
way of playing the cutting-plane game against an adversarial separation oracle.

Remark 2. The center of gravity method is just one strategy for Alice to play the cutting-plane
game. There are other algorithms, collectively “cutting-plane methods,” which provide guarantees
for the cutting-plane game trading off the number of iterations before termination, and the addi-
tional computation required by Alice. As we will see, the center-of-gravity method attains an optimal
iteration count, but requires a very expensive (though still polynomial-time) implementation.

For example, because St can become very complicated over time, one may elect to use a cheaper
superset to approximate it. The ellipsoid method does this by maintaining an approximating ellip-
soid instead [Kha80]. This cutting-plane method is relatively cheap to implement (requiring ≈ d2

time per iteration to maintain a matrix defining an ellipse), but loses a factor of d in the number
of iterations over the center of gravity method because of a worse volume decrease guarantee.

A line of work [Vai96, LSW15, JLSW20] has developed implementations which have gradually
improved the cost of cutting-plane methods to match the iteration complexity of the center of gravity
method, and require O(d2) additional computation per iteration matching the ellipsoid method,
which is intuitively necessary to maintain St by updating its constraint matrix.

Theorem 1, and its efficient implementation (as given by Theorem 3 and the recent works men-
tioned in Remark 2), represent a powerful way to establish the polynomial-time tractability of
a convex optimization problem, simply by appealing to convexity. However, the actual computa-
tional overhead of this general-purpose tool (Ω(d3) in the worst case) can still be highly superlinear
for many natural problems, which admit o(d3)-sized descriptions. Throughout the first part of the
course, we give a variety of alternative structured optimization algorithms. In appropriate con-
vex optimization settings, these improved algorithms allow us to beat the black box of calling
Theorem 1 and obtain improved runtimes by catering to problem-specific structure.

4 Logconcavity
We introduce our next topic of study, logconcave functions, in this section. Analogously to how
convexity is a sign of tractability for continuous optimization problems (and convex analysis is
useful in broader, potentially nonconvex, settings), the analysis of logconcave functions is a very
useful tool when designing statistical algorithms in continuous settings. For example, later lectures
develop a sampling algorithm that applies generically to logconcave distributions, demonstrating
that logconcavity is a sign of tractability for sampling problems. We begin with a definition.

Definition 6 (Logconcave function). We say a function µ : X → R>0 is logconcave if X is convex
and for all x, x′ ∈ X , and all λ ∈ [0, 1], µ((1− λ)x+ λx′) ≥ µ(x)1−λµ(x′)λ.

To demystify Definition 6, taking a logarithm and negating shows for f := − logµ,

f((1− λ)x+ λx′) ≤ (1− λ)f(x) + λf(x′),

i.e. f : X → R is convex. In accordance with our discussion of proper extensions of convex
functions at the end of Section 2, we always assume that a logconcave function µ : X → R>0

takes on the value 0 outside X , which corresponds to − logµ taking on the value ∞. Intuitively,
just as convexity of f prevents it from have disjoint sets of minimizers (Lemma 3), logconcavity
of µ (when µ is a probability density) prevents it from having disjoint modes, allowing sampling
algorithms to locally explore. Notice that logconcave functions are not necessarily probability
densities (i.e. we may have

∫
µ(x)dx 6= 1), but whenever µ is integrable, there is a normalizing

constant Z :=
∫
µ(x)dx such that µ

Z is a probability density, so we will often conflate logconcave

7

functions µ with the associated density ∝ µ. We call logconcave µ : Rd → R≥0 a logconcave density
if
∫
µ(x)dx = 1. For intuition, a few canonical examples of logconcave functions follow.

1. Let µ(x) = exp(− 1
2 ‖x‖

2
2) be the (unnormalized) standard multivariate Gaussian density on

Rd. We can verify µ is logconcave by observing that f := − logµ = 1
2 ‖·‖

2
2 is convex.

2. Let µ(x) be the 0-1 indicator of a convex set S, corresponding to the (unnormalized) uniform
distribution on S. This µ is also logconcave since f := − logµ = χS is convex.

While it is straightforward to sample from the density ∝ exp(− 1
2 ‖·‖

2
2) since it decomposes into

independent coordinates, it is less obvious how to efficiently sample from the density ∝ exp(−χS)
for potentially ill-behaved S. By using tools from logconcave analysis (and other continuous tech-
niques), we develop an algorithm for solving a significant generalization of this uniform sampling
problem later in the course, informally summarized in the following.

Theorem 3 (Polynomial-time logconcave sampling). Let µ : Rd → R≥0 be a logconcave density,
and let µ ∝ exp(−f) where f : Rd → R ∪ {∞} is convex and poly(d)-well-conditioned where it
is finite.9 There is an algorithm which uses poly(d, log 1

ε) queries to a value oracle for f , and
poly(d, log 1

ε) additional time, to produce a sample within ε total variation distance of µ.

Recall that Theorem 1 is a powerful general-purpose convex optimization primitive, but can be
substantially improved in structured settings. Along with proving Theorem 3 in the second part of
the course, we show how to design sturctured sampling algorithms which can substantially improve
upon the runtimes of Theorem 3 when the density µ admits additional structure.

The most useful inequality in studying logconcave functions is the Prékopa-Leindler inequality
[Pre73]. Indeed, many results in logconcave analysis may be rephrased as an application of it.

Theorem 4 (Prékopa-Leindler). Let λ ∈ (0, 1), and let f, g, h : Rd → R≥0 satisfy h((1 − λ)x +
λx′) ≥ f(x)1−λg(x′)λ for all x, x′ ∈ Rd. Then∫

h(x)dx ≥
(∫

f(x)dx
)1−λ(∫

g(x)dx
)λ

.

Theorem 4 is daunting, but is related to the much more interpretable Brunn-Minkowski inequality,
which we present shortly. To gain intuition for Theorem 4 we first give two simple consequences.

Corollary 2. Let µ, µ′ : Rd → R be logconcave.

1. Let S ⊆ [d] and let µS(xS) :=
∫

R[d]\S µ(xS , x−S)dx−S be the marginal on S, defined for
xS ∈ RS. Then µS is logconcave, and if µ is a density, so is µS.

2. Let (µ ∗ µ′)(x) be the convolution of µ and µ′, i.e. (µ ∗ µ′)(x) =
∫
µ(x − y)µ′(y)dy. Then

µ ∗ µ′ is logconcave, and if µ, µ′ are densities, so is µ ∗ µ′.

Proof. By integrating µS over xS ∈ RS , it is clear that µS is a density if we assume
∫

Rd µ(x)dx = 1.
To see logconcavity of µS , fix two points xS , x′S ∈ RS , and let λ ∈ (0, 1). Since logconcavity of µ
verifies the precondition of Theorem 4 with f, g, h : R[d]\S → R defined by

f(x−S) := µ(xS , x−S), g(x−S) := µ(x′S , x−S), and h(x−S) := µ((1− λ)xS + λx′S , x−S),

applying Theorem 4 with these functions proves logconcavity of µS .

Similarly, if µ, µ′ are densities, (µ ∗ µ′) is clearly a density upon integrating over x, since∫
(µ ∗ µ′)(x)dx =

(∫
µ(z)dz

)(∫
µ′(y)dy

)
= 1,

where each (z, y) ∈ Rd × Rd is counted once on the left-hand side corresponding to x = z + y.
Without loss of generality, suppose µ, µ′ are densities, since multiplication by constants preserves
logconcavity and scales the convolution by a constant (which also cannot affect logconcavity). The
product µ · µ′ is then a logconcave density on Rd × Rd because the sum of convex functions is

9We will formally define well-conditionedness in a later lecture, which roughly is a measure of the regularity of
f . The assumption that f is poly(d)-well-conditioned is not restrictive in practice.

8

convex. Since convexity is preserved under linear transformations,10 this implies z + y follows a
logconcave density, where (z, y) ∼ µ · µ′, as desired.

Theorem 4 and its consequences provide a powerful set of tools for analyzing probabilistic state-
ments. For example, suppose we wish to show, for convex S ⊆ Rd symmetric about 0d,

f(x) := Pr
z∼N (0d,Id)

[z ∈ S ⊕ {x}]

is maximized when x = 0d. In other words, we want to show that a random Gaussian vector in
Rd falls in S ⊕ {x} with the highest probability when x = 0d. While intuitively obvious, it is
not a priori clear how one would show such a statement. Consider applying the second part of
Corollary 2 with µ ∝ exp(− 1

2 ‖·‖
2
2) and µ′ = exp(−χS(·)), where χS is the indicator function of S,

and µ is normalized to be a density. This gives a logconcave function µ ∗µ′ which, when evaluated
at x ∈ Rd, exactly corresponds to the probability f(x) defined above:

(µ ∗ µ′)(x) =

∫
µ(z)µ′(x− z)dz =

∫
µ(z)1x−z∈Sdz =

∫
µ(z)1z∈S⊕{x}dz = f(x).

Moreover, f is clearly symmetric about 0d. Since symmetric, convex functions are minimized at
0d, symmetric, logconcave functions are also maximized there, giving the conclusion.

We next sketch how to prove Theorem 4 by starting with the seemingly-simpler Brunn-Minkowski
inequality. In fact, Theorem 4 implies Theorem 5, so we prove this first.

Theorem 5 (Brunn-Minkowski). Let A,B be compact and d-dimensional.11 Then Vol(A⊕B)
1
d ≥

(Vol(A))
1
d + (Vol(B))

1
d . Equivalently, for all λ ∈ [0, 1], Vol((1− λ)A⊕ λB) ≥ Vol(A)1−λVol(B)λ.

Proof. We first show that the two given statements are actually equivalent, as it is not obvious.
To see that the former implies the latter, recalling that Vol(αA) = αdVol(A) for α ≥ 0,

Vol((1− λ)A⊕ λB) ≥
(

(1− λ)Vol(A)
1
d + λVol(B)

1
d

)d
≥ Vol(A)1−λVol(B)λ.

The last inequality used
(1− λ)x+ λy ≥ x1−λyλ for x, y ≥ 0, (6)

which follows as log is concave and monotone. Conversely, the latter implies the former by opti-
mizing over λ ∈ (0, 1) in the following derivation:

Vol(A⊕B) = Vol
(

(1− λ) · A

1− λ
⊕ λ · B

λ

)
≥ Vol(A)1−λVol(B)λ

(1− λ)d(1−λ)λdλ
=
(

(Vol(A))
1
d + (Vol(B))

1
d

)d
,

which is omitted to avoid tedium. Now, the latter statement is an application of Theorem 4, with
f ← exp(−χA), g ← exp(−χB), and h← exp(−χ(1−λ)A+λB). To verify the condition of Theorem 4
holds, whenever f(x)1−λg(x′)λ is nonzero, we have (1−λ)x+λx′ ∈ (1−λ)A+λB, so h is nonzero
there. Theorem 4 then gives the desired Vol((1− λ)A⊕ λB) ≥ Vol(A)1−λVol(B)λ.

Interestingly, Theorem 5 does not actually require logconcavity of the indicator functions f, g, h,
i.e. it holds for arbitrary compact sets, not just convex ones. We mention that Theorem 5 is not
too complicated to establish without using Theorem 4. We give proofs in two simpler settings, and
sketch how they may be extended to prove Theorem 5 in general.

Lemma 8. Theorem 5 is true when d = 1.

Proof. Let a+ := maxa∈A a and b− := minb∈B b, which exist by compactness. Then A⊕B contains
A+ {b−} and B+ {a+}, which are disjoint (except at a single point) since b+ a+ ≥ b−+ a for any
a ∈ A, b ∈ B. This establishes Vol(A⊕B) ≥ Vol(A+{b−})+Vol(B+{a+}) = Vol(A)+Vol(B).

10Definition 2 implies g(x) = f(Ax) is convex, for any linear operator A, via the definition and applying linearity.
11That is, this holds when A,B ⊆ Rd′ for d′ > d, but both are contained in parallel d-dimensional subspaces with

nonzero interiors in the subspaces. This extension will be useful later in Lemma 11.

9

Lemma 9. Theorem 5 is true when A and B are axis-aligned boxes.

Proof. Let A =
∏
i∈[d][0, ai] and B =

∏
i∈[d][0, bi], for nonnegative {ai, bi}i∈[d]. This is without

loss of generality, as shifting boxes does not affect their volume, or the volume of their Minkowski
sum. The first characterization in Theorem 5 then follows from the AM-GM inequality:(

Vol(A)

Vol(A⊕B)

) 1
d

+

(
Vol(B)

Vol(A⊕B)

) 1
d

=
∏
i∈[d]

(
ai

ai + bi

) 1
d

+
∏
i∈[d]

(
bi

ai + bi

) 1
d

≤

1

d

∑
i∈[d]

ai
ai + bi

+

1

d

∑
i∈[d]

bi
ai + bi

 = 1.

More generally, one can extend Lemma 9 to prove the Brunn-Minkowski inequality for any A, B
which are finite collections of disjoint axis-aligned boxes, by induction on the number of boxes.
The base case is handled by Lemma 9. Next, suppose Theorem 5 is true when A,B consist of ≤ n
boxes in total, and consider the case of n+ 1 boxes. We claim there exist translations of A,B and
an axis-aligned hyperplane H (i.e. H = {x ∈ Rd | xi ≥ t} for some i ∈ [d], t ∈ R), such that

Vol(A ∩H)

Vol(B ∩H)
=

Vol(A ∩Hc)

Vol(B ∩Hc)
=

Vol(A)

Vol(B)
, (7)

and at least one box in A lies entirely in each of H, Hc. To obtain this construction, pick any two12

(disjoint) boxes in A and any coordinate axis where they are disjoint, choose t appropriately, and
shift B to attain (7) along this choice of H. The inductive hypothesis then establishes the desired

Vol(A⊕B) ≥ Vol((A ∩H)⊕ (B ∩H)) + Vol((A ∩Hc)⊕ (B ∩Hc))

≥
(
Vol(A ∩H)

1
d + Vol(B ∩H)

1
d

)d
+
(
Vol(A ∩Hc)

1
d + Vol(B ∩Hc)

1
d

)d
= Vol(A ∩H)

(
1 +

(
Vol(B ∩H)

Vol(A ∩H)

) 1
d

)d
+ Vol(A ∩Hc)

(
1 +

(
Vol(B ∩Hc)

Vol(A ∩Hc)

) 1
d

)d

= Vol(A)

(
1 +

(
Vol(B)

Vol(A)

) 1
d

)d
=
(
Vol(A)

1
d + Vol(B)

1
d

)d
.

For general sets A,B in Theorem 5, it suffices to take the limit of a sequence of approximations of
A,B by collections of disjoint boxes. Finally, we provide a proof of Theorem 4 for completeness.

Proof of Theorem 4. We induct on d. For d = 1, let Lf (t) := {x ∈ R | f(x) ≥ t} for all t ∈ R≥0,
and similarly define Lg(t) and Lh(t). We observe Lh(t) ⊇ (1− λ)Lf (t)⊕ λLg(t), as

h((1− λ)x+ λx′) ≥ f(x)1−λg(x′)λ ≥ t for x ∈ Lf (t), x′ ∈ Lg(t).

Therefore, Lemma 8 shows Vol(Lh(t)) ≥ (1−λ)Vol(Lf (t)) +λVol(Lg(t)) for all t ≥ 0. This proves
Theorem 4 when d = 1, as Fubini’s theorem then implies∫

h(x)dx =

∫ (∫ ∞
0

1h(x)≥tdt
)
dx =

∫ ∞
0

Vol(Lh(t))dt

≥ (1− λ)

∫ ∞
0

Vol(Lf (t))dt+ λ

∫ ∞
0

Vol(Lg(t))dt

= (1− λ)

∫
f(x)dx+ λ

∫
g(x)dx ≥

(∫
f(x)dx

)1−λ(∫
g(x)dx

)λ
.

The last inequality applied (6). Next, for d > 1, define for any a, b ∈ R, and c := (1− λ)a+ λb,

fa(z) := f (a, z) , gb(z) := g (b, z) , hc := h (c, z) , for all z ∈ Rd−1.

12The problem is symmetric in A,B, and one of A or B has ≥ 2 boxes if we are not in the base case.

10

Note fa, gb, and hc satisfy Theorem 4’s assumption in dimension d− 1 for any a, b ∈ R, as

hc((1− λ)z + λz′) = h((1− λ)(a, z) + λ(b, z′)) ≥ fa(z)1−λgb(z
′)λ.

Therefore, by the inductive hypothesis,

H(c) :=

∫
Rd−1

hc(z)dz ≥
(∫

Rd−1

fa(z)dz
)1−λ(∫

Rd−1

gb(z)dz
)λ

=: F (a)1−λG(b)λ.

Hence, the functions F , G, and H defined above satisfy Theorem 4’s assumption in dimension 1,
so we have the desired conclusion from

∫
R H(a)da =

∫
Rd h(x)dx, and our base case establishing∫

H(a)da ≥
(∫

F (a)da
)1−λ(∫

G(a)da
)λ

.

5 Grünbaum’s theorem
In this section, we establish Theorem 2, which was used in Section 3. Before giving the proof, we
state a few useful convex geometry facts, some of which are consequences of the results of Section 4.
First, we bound the volume of a cone sliced by a halfplane through its center of gravity.

Lemma 10. Theorem 2 is true if S ∈ Rd is a cone symmetric about e1, and v = e1.

Proof. Suppose the volume of the base of S is 1, so its volume is 1
d · 1 · 1 = 1

d . This is without loss
of generality by scale and shift invariance of volume ratios. Then the center of gravity x̄S is(

1

Vol(S)

∫ 1

0

x · xd−1dx
)
e1 =

(
1

Vol(S)
· 1

d+ 1

)
e1 =

d

d+ 1
e1.

Here we used that the base volume at the slice of the cone with first coordinate x scales as xd−1.
Now we can compute Vol(S ∩H) = (d

d+1)dVol(S) ≥ 1
eVol(S).

Next, we prove two useful reductions, which combined with Lemma 10 complete the proof.

Lemma 11. Let S ⊆ Rd be convex. Consider the construction of a set T , symmetric about e1, as
follows. For each t ∈ R, let St := S ∩ {x ∈ Rd | x1 = t}, and let Tt := T ∩ {x ∈ Rd | x1 = t} be a
(d− 1)-dimensional ball with the same volume as St. Then T is convex and x̄T = x̄S.

Proof. The fact that x̄T = x̄S can be verified along every coordinate other than the first, since T
and S are identical along these coordinates. Moreover, it is clearly true along e1, since volumes of
slices are identical. Next, note that rad(t) ∝ Vol(Tt)

1
d−1 = Vol(St)

1
d−1 , for a normalizing constant

depending on Vol(B(0d, 1)). Moreover, we claim Vol(St)
1

d−1 , and hence rad(t), are concave as
functions of t. To see this, for any Sa, Sb, and Sc with c = (1−λ)a+λb, we have Sc ⊇ (1−λ)Sa⊕λSb
by convexity of S, so Theorem 5 shows the promised concavity of rad(t):

Vol(Sc)
1

d−1 ≥ (1− λ)Vol(Sa)
1

d−1 + λVol(Sb)
1

d−1 .

Finally, we claim concavity of rad implies that T is convex. To see this, consider two slices Tt
and Tt′ with radii r and r′, such that the slice λ along the e1 axis between r and r′ has radius
≥ (1− λ)r + λr′. By convexity of the Euclidean norm (Lemma 4), any point which is the convex
combination of points in Tt and Tt′ then lies in T(1−λ)t+λt′ , as claimed.

Lemma 12. Let T ⊆ Rd be a convex set such that Tt := T ∩ {x ∈ Rd | x1 = t} is a (d − 1)-
dimensional ball for all t ∈ R. Consider the construction of a cone U , symmetric about e1, as
follows. Let t̄ := [x̄T]1, and choose t0 < t̄ so the cone with tip t0 and base Tt̄ has the same volume
as {x ∈ T | x1 ≤ t̄}. Finally extend this cone until it has equal volume to T . Then [x̄U]1 ≤ [x̄T]1.

11

Proof. We claim there does not exist t ∈ R such that Vol(T ∩Ht) > Vol(U ∩Ht), where Ht := {x ∈
Rd | x1 ≤ t}. This proves that mass has only shifted to the left (along the e1 direction), which
yields the claim. We proceed by contradiction, assuming t is minimal, splitting into two cases.

Case 1: t ≤ t̄. Let r(t) and q(t) denote the radii of Tt and Ut respectively, i.e. the intersections of
T and U with the slice {x ∈ Rd | x1 = t}. Further, r(t) ≥ q(t), else we could find a smaller t which
maintains Vol(T ∩Ht) > Vol(U ∩Ht), contradicting minimality. Let S[t,t̄] := [x ∈ Rd | t ≤ x1 ≤ t̄].
We claim that Vol(T ∩S[t,t̄]) ≥ Vol(U ∩S[t,t̄]), which follows from concavity of the radius functions
r and q (see Lemma 11), since r(t) ≥ q(t) and r(t̄) = q(t̄). This contradicts our construction, as

Vol(T ∩Ht̄) = Vol(T ∩Ht) + Vol(T ∩ S[t,t̄]) > Vol(U ∩Ht) + Vol(U ∩ S[t,t̄]) = Vol(U ∩Ht̄).

Case 2: t > t̄. We claim that there exists s ∈ (t̄, t) such that r(s) > q(s); otherwise, by minimality
of t, we would not have Vol(T ∩Ht) > Vol(U ∩Ht). Now Vol(T ∩Hs) ≤ Vol(U ∩Hs) by minimality
of t, so the same contradiction as argued before holds:

Vol(T ∩Hs) = Vol(T ∩Ht̄) + Vol(T ∩ S[t̄,s]) > Vol(U ∩Ht̄) + Vol(U ∩ S[t̄,s]) = Vol(U ∩Hs).

The only inequality used concavity of r and q, r(t̄) = q(t̄), and r(s) > q(s).

Proof of Theorem 2. Without loss of generality by rotation and shift invariance, let v = e1 and
x̄S = 0d. We then apply the transformations in Lemma 11 and 12 to S, first forming T also with
center of gravity 0d, and then forming a cone U with center of gravity x̄U , such that

Vol(U ∩H[x̄U]1) ≤ Vol(U ∩H0) = Vol(S ∩H0), and Vol(U) = Vol(S).

Finally, Lemma 10 establishes Vol(U ∩H[x̄U]1) ≥ 1
eVol(U) as claimed.

12

Source material
Portions of this lecture are based on reference material in [Roc70, Gar02, Vem11, Bub15, Sid23],
as well as the author’s own experience working in the field.

References
[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and

Trends in Machine Learning, 8(3-4):231–357, 2015.

[BV04] Dimitris Bertsimas and Santosh S. Vempala. Solving convex programs by random walks.
J. ACM, 51(4):540–556, 2004.

[CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Fourth Edition. The MIT Press, 2022.

[Gar02] Richard J. Gardner. The brunn-minkowski inequality. Bulletin of the American Math-
ematical Society, 39(3):355–405, 2002.

[Gru60] B. Grunbaum. Partitions of mass-distributions and convex bodies by hyperplanes. Pa-
cific Journal of Mathematics, 10(4):1257–1261, 1960.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting
plane method for convex optimization, convex-concave games, and its applications. In
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, pages 944–953. ACM, 2020.

[Kha80] Leonid G. Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Computational Physics, 20(1):53–72, 1980.

[LSV18] Yin Tat Lee, Aaron Sidford, and Santosh S. Vempala. Efficient convex optimization
with membership oracles. In Conference On Learning Theory, COLT 2018, volume 75
of Proceedings of Machine Learning Research, pages 1292–1294. PMLR, 2018.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method
and its implications for combinatorial and convex optimization. In Venkatesan Gu-
ruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, pages 1049–1065. IEEE Computer Society, 2015.

[Pre73] Andras Prekopa. On logarithmic concave measures and functions. Acta Scientiarum
Mathematicarum, 34:335–343, 1973.

[Roc70] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Sid23] Aaron Sidford. Optimization Algorithms. 2023.

[Vai96] Pravin M. Vaidya. A new algorithm for minimizing convex functions over convex sets.
Math. Program., 73:291–341, 1996.

[Vem11] Santosh Vempala. Algorithmic Convex Geometry. 2011.

13

	Introduction
	Convexity
	Cutting-plane methods
	Logconcavity
	Grünbaum's theorem

